Adaptation of rainbow fish to lake and stream habitats.
نویسندگان
چکیده
Fish occupy a range of hydrological habitats that exert different demands on locomotor performance. We examined replicate natural populations of the rainbow fishes Melanotaenia eachamensis and M. duboulayi to determine if colonization of low-velocity (lake) habitats by fish from high-velocity (stream) habitats resulted in adaptation of locomotor morphology and performance. Relative to stream conspecifics, lake fish had more posteriorly positioned first dorsal and pelvic fins, and shorter second dorsal fin bases. Habitat dimorphism observed between wild-caught fish was determined to be heritable as it was retained in M. eachamensis offspring raised in a common garden. Repeated evolution of the same heritable phenotype in independently derived populations indicated body shape divergence was a consequence of natural selection. Morphological divergence between hydrological habitats did not support a priori expectations of deeper bodies and caudal peduncles in lake fish. However, observed divergence in fin positioning was consistent with a family-wide association between habitat and morphology, and with empirical studies on other fish species. As predicted, decreased demand for sustained swimming in lakes resulted in a reduction in caudal red muscle area of lake fish relative to their stream counterparts. Melanotaenia duboulayi lake fish also had slower sustained swimming speeds (Ucrit) than stream conspecifics. In M. eachamensis, habitat affected Ucrit of males and females differently. Specifically, females exhibited the pattern observed in M. duboulayi (lake fish had faster Ucrit than stream fish), but the opposite association was observed in males (stream males had slower Ucrit than lake males). Stream M. eachamensis also exhibited a reversed pattern of sexual dimorphism in Ucrit (males slower than females) relative to all other groups (males faster than females). We suggest that M. eachamensis males from streams responded to factors other than water velocity. Although replication of muscle and Ucrit phenotypes across same habitat populations within and/or among species was suggestive of adaptation, the common garden experiment did not confirm a genetic basis to these associations. Kinematic studies should consider the effect of the position and base length of dorsal fins.
منابع مشابه
Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology.
To what extent are patterns of biological diversification determined by natural selection? We addressed this question by exploring divergence in foraging morphology of threespine stickleback fish inhabiting lake and stream habitats within eight independent watersheds. We found that lake fish generally displayed more developed gill structures and had more streamlined bodies than did stream fish....
متن کاملInfluence of Stream channel morphology and in-stream habitats on fish community in Golestan province Streams
Four streams with different sizes were selected for studying the effects of environmental factors on fish assemblages using indirect (Detrended Correspondence Analysis, DCA) and direct (Redundancy Analysis, RDA) gradient analysis in Golestan province. DCA of presence-absence and relative abundance data showed well gradient and linear model of species variability. In the within-site RDA, environ...
متن کاملCoarse- and fine-grained phenotypic divergence among threespine stickleback from alternating lake and stream habitats
Background: Habitat characteristics can vary over small spatial scales at which gene flow is expected to swamp any effect of divergent natural selection. However, fine-grained (‘microgeographic’) adaptive divergence may still be feasible if individuals exhibit dispersal behaviours that improve the match between their phenotype and habitat. For example, threespine stickleback (Gasterosteus acule...
متن کاملEvidence of Adaptive Evolutionary Divergence during Biological Invasion
Rapid phenotypic diversification during biological invasions can either arise by adaptation to alternative environments or by adaptive phenotypic plasticity. Where experimental evidence for adaptive plasticity is common, support for evolutionary diversification is rare. Here, we performed a controlled laboratory experiment using full-sib crosses between ecologically divergent threespine stickle...
متن کاملComparison of some blood parameters of rainbow trout (Oncorhynchus mykiss) living in running and still water
The aim of this study was to compare some biochemical blood parameters of rainbow trout (Oncorhynchus mykiss) living in running or still waters. Some biochemical parameters of rainbow trout were examined, and the results were evaluated between sampling locations and according to seasonal changes. Healthy adult rainbow trout were caught from six different locations on the Bahçelik Dam Lake and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 57 1 شماره
صفحات -
تاریخ انتشار 2003